MF/HF/VHF/UHF TRANSCEIVER

The ATRAD transceiver is a scalable receiving system for use as a building block for MF, HF, VHF and UHF radar systems. The system is expandable in groups of three receivers, with up to 12 in a single 4 U rack, and 24 receivers in a single 8 U rack. The transceiver is based on ATRAD's scalable modular approach to system design. It offers operation in the MF/HF/VHF/UHF bands, and being GPS time and frequency locked, it enables monostatic, bistatic and multistatic radar operation.

APPLICATIONS

- VHF ($45-65 \mathrm{MHz}$) SA and DBS wind profiling radars
- UHF ($400-500 \mathrm{MHz}$) SA and DBS wind profiling radars
- MST radar
- MF and HF SA and DBS partial reflection radars
- HF and VHF ionospheric radars
- HF and VHF meteor radars
- Monostatic radar
- Bi-static radar
- Multi-static radar

The transceiver uses FPGAs and a Trimble GPS module as building blocks. Frequency and time are disciplined using the GPS. The system is scalable, in groups of three receivers, up to 12 in single $4 U$ rack (shown above), and 24 in a 8 U rack (shown below). The system includes an exciter for driving ATRAD (or other) transmitters.
(Above) 24-channel receiver system

(Above) An ATRAD Remote Receiving system based on the transceiver. This figure shows a 6-channel transceiver, with Linux-PC, bandpass filter and UPS; the keyboard and screen are deployed. This is stand-alone system designed for use with remote transmitters or radars. (Below top) BLP radar using a three-receiver transceiver, (centre) an ionospheric radar using a six-channel transceiver, and (below bottom), a meteor radar with five-receivers

KEY FEATURES

3-24

Digital
82 MHz
< 1 ppm
Trimble Mini-T, 120 MHz clock, 1 PPS
1 Gb ethernet (IEEE 802.3)
Relative gain adjustable from 0 to 80 dB
Programmable digital filter (range sampling rate dependant)
4.7 Vp-p (50R) typical (17.4 dBm)
Channels
Type
IF LO
Frequency Stability
GPS
External Data Interface
Gain
Receiver bandwidth
Transmitter Drive output

Channels
Type
IF LO
Frequency Stability
GPS
External Data Interface
Gain
Receiver bandwidth
Transmitter Drive output

Transceiver

(12-channel ATRAD Digital receiver)

Transmitters
Use co-located transmitters, or remote radars or transmitters

Antenna Arrays
Selected according to application

General Description

16-Bit Digital Transceiver incorporating receiver, exciter, GPSDO option

User selected
User selected

Antenna Array Configurations: User / application determined Antenna Array Footprints: User / application determined

Receiver: 3-24 Channel, 16-bit
Exciter: Single Channel, 16-bit
Typical Sounding Range: User
selectable
Range Resolution: 100-4,000 m (software selectable)
Range Gates: Up to 6,000
Operating Modes: User determined operating modes. Multiple modes possible by switching antenna sets Remote access: Remote monitoring and control via Satellite, 3G/4G, ethernet or dialup.

Options

ATRAD DAA: software modules selected for the particular applications

Antenna Arrays

Example layouts for 6-receiver meteor interferometer or spaced antenna applications (pentagon), 4-channel Spaced Antenna (triangle), 6- and 12receiver Ionospheric Arrays, 24receiver general purpose array, 5receiver meteor interferometer (cross). User defined arrangements are of course possible.

Antenna Guying

Transmitters

Examples of (from left to right) ATRAD MF, VHF and UHF transmitters

Recommended for high-wind locations (>20m/s)
ATRAD MF, HF VHF transmitters available

ATRAD Pty Ltd
20 Phillips Street, Thebarton SA 5031 AUSTRALIA
Tel: +61 873240818
4
Email: enquiries@atrad.com.au

ATRAD
ABN 72112121801

